US009063750B2

a2 United States Patent

Gupta et al.

US 9,063,750 B2
Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MAPPING HIGH-PERFORMANCE
COMPUTING APPLICATIONS TO

PLATFORMS

(735)

Inventors: Abhishek Gupta, Champaign, IL. (US);

Dejan S Milojicie, Palo Alto, CA (US);
Paolo Faraboschi, Sant Cugat Barcelona
(ES)

(73) Assignee:

Hewlett-Packard Development

Company, L.P., Houston, TX (US)

Notice:

")

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 365 days.

@
(22)

Appl. No.:
Filed:

(65)

US 2013/0198723 Al

Int. Cl1.
GO6F 9/46
GO6F 1130
GO6F 9/44
GO6F 11/34
GO6F 9/50
U.S. CL
CPC

(1)

(52)

Feb.

13/363,722

1,2012

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GO6F 9/44 (2013

Prior Publication Data

Aug. 1, 2013

01); GO6F 11/3428

(2013.01); GOGF 11/3409 (2013.01); GO6F
1173447 (2013.01); GOGF 2201/865 (2013.01);
GO6F 9/5072 (2013.01); GO6F 9/5094
(2013.01); GOGF 2209/501 (2013.01); Y02B

(58)
None

Field of Classification Search

60/142 (2013.01)

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7.433,931 B2 10/2008 Richoux
7,506,297 B2 3/2009 Mukherjee et al.
7,788,671 B2 8/2010 Black-Ziegelbein et al.
8,005,879 B2 8/2011 Bornhoevd et al.
8,219,358 B2* 7/2012 Yatkoetal.cccoo..... 702/186
2010/0094592 Al 4/2010 Cherkasova et al.
OTHER PUBLICATIONS

Braun et al.; A Taxonomy for Describing Matching and Scheduling
Heuristics for Mixed-Machine Heterogeneous Computing Systems,
Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE
Symposium on , vol., No., pp. 330,335, Oct. 20-23, 1998.*
Mclntosh-Smith et al; Eergy-Aware Metrics for Benchmarking Het-
erogeneous Systems; ACM SIGMETRICS Performance Evaluation
Review—Special issue on the 1st international workshop on perfor-
mance modeling, benchmarking and simulation of high performance
computing systems (PMBS 10) vol. 38 Issue 4, Mar. 2011, pp.
88-94 *

* cited by examiner

Primary Examiner — Meng An

Assistant Examiner — Bing Zhao

(74) Attorney, Agent, or Firm — Hewlett-Packard Patent
Department

(57) ABSTRACT

The mapping of High Performance Computing (“HPC”)
applications to platforms is provided. An HPC application
characterization module determines an HPC application sig-
nature to characterize the HPC application. An HPC applica-
tion mapping module selects a platform from a plurality of
platforms to execute the HPC application based on the HPC
application signature and a set of benchmarks. An HPC appli-
cation monitoring module monitors the execution of the HPC
application on the selected platform.

19 Claims, 12 Drawing Sheets

Determine HPC
Application Instance
(N, P, App SIGN)

Read number of
avallable platforms
(numiS)

Model the effect of 08
interference: best case {co-
scheduled) vs. worst cage

920

Model the effect of
Network Noise
(interference by other
applications)

925

930

Caiculate Standard Deviation
B[] = {08 Noise, Network Moise}

Caleulate Normalized
Standard Deviation
Dfi} = SEysp

U.S. Patent Jun. 23,2015 Sheet 1 of 12 US 9,063,750 B2

100 \

105

User
Input
/ 110 : 2
HPC Application
H‘PC' Management Component
Application (Characterization,
Mapping & Monitoring)
P /M\I}’ /f"w,,} . T
- ﬁ/ o {j 53 ke N
y & | \ A\
/f f; fj K@ X\
/g" J’; y\‘% \\
o

1356

Cluster with Supercomputer

Cluster with ;
gigabit Ethernet Infiniband
interconnect interconnect

FIG. 1

U.S. Patent Jun. 23,2015 Sheet 2 of 12 US 9,063,750 B2

205
200 \ HPC Application Characterization 4
Module

i

e & : e 210
HPC Application Mapping |
Module

L&

215
HPC Application Monitoring
Module
\" o

U.S. Patent Jun. 23,2015 Sheet 3 of 12 US 9,063,750 B2
300
305 \ 310 \
Application Profiling User Input
x"f 2, 5
"\K &\‘t ."s“ e
\\%\\\\ x !zf;f -
\”\L \,\\\ f;f'f;/ fj\f
W{‘x%\\k | /rfx
\% \f; j‘w/ ,“x’/
315
Application Signature

e

§

|

|
320 \ JU

\km. x‘ff
(SIGN h
{
f1(N,P) // Computation time (FLOPS) : Grain size
F2(N,P) /7 Humber of messages
£3(N,P) // Size of each message in bvtes
£4 (N, P} // FLOPSPerBarrier {(For Barrier based apps)
islterative // Is the application iterative or not?
needPeriodiclB // Is period load balancing reguired?
b

FIG. 3

U.S. Patent

400 \

Jun. 23, 2015 Sheet 4 of 12

{

fSIGN Jacobi

4
N/VP
N*/P
True
False

/7
1/
/7
/7
’/
1/

Computation time (FLOPS) : Grain size
Humber of messages

Size of each message in bvytes
FLOPSPerBarrier (For Barrier based apps)
Is the application iterative or noit?

Is period lead balancing regquired?

405\\\\

FIG. 4A

{

(SIGN FFT

(Nxlog,M)y /P // Computation time (FLOPS) : Grain size

log,P
N/P
-1
False
False

// Number of messages

// 8ize of each message in bvtes

//

// Is the application iterative or not?
// Is period load balancing required?

FIG. 4B

US 9,063,750 B2

FLOPSPerBarrier (For Barrier based apps)

U.S. Patent Jun. 23,2015 Sheet 5 of 12 US 9,063,750 B2

500 | — | _ 505
\ HPC Platform Characterization :
: Module
— — | 510
HPC Application Benchmarking
Module
515
i | HPC Platform Selection Module
(with user preferences)

..

FIG. 5

U.S. Patent Jun. 23,2015 Sheet 6 of 12 US 9,063,750 B2

600
HPC Platform

Characterization

605\\\

Is
{
// Performance parameters

C // CPU core speed

o // Inter node latency {Message startup cost,
Average, Std. Dev.)

B // Inter node bandwidth (Average, Std. Dev.)

// Cost and power paranmeters

r // Charging rate per processor hour (for long
running HPC applications total money spent is
primarily dependent on CPU; charging rate and
other factors such as storage cost become
constant and are not considered

Pigte // Idle power

o // Constant factor for CPU% in Power equation

P // Amortized network power consumption per
Processor

// Additional parameters for more accurate analysis

08 Noise // Duration and frequency
Contention Model, Bisection BW

FIG. 6

U.S. Patent Jun. 23,2015 Sheet 7 of 12 US 9,063,750 B2

Determine HPC 700
Application Instance
(N, P, SIGN)
1 W
Determine number of 705 Calculate Normalized
available platforms Performance
(numiS) Tli] = ?{’%}IF&}
710
715
—o(Read IS][i] }/

Calculate Communication
to Computatggg Time Ratio [Output T }

725 Calculate Para
Efficiency
ﬁifl
30 { Scale by Sequentsat]

FIG. 7

Performance
Pli] = E[iI"IS[i}.c

U.S. Patent Jun. 23,2015 Sheet 8 of 12 US 9,063,750 B2

Caleulate 800
Normalized
Performance T

(FIG. 7)

'

805

Determine number of
available platforms
{(numiS)

835

810 Yes

No

815 30
\{ Read IS]i] } [Output C]
\{ Ca culate Cost
= THMIS[LrP
FIG. 8

alculate Nonnai zed
Cost
Cli] = Eiﬂfﬁﬁ}

830

U.S. Patent Jun. 23,2015 Sheet 9 of 12 US 9,063,750 B2

Determine HPC 900
Application Instance
(N, P, App SIGN)

l 935 \ |

Read number of 905 Calculate Normalized
available platforms Standard Deviation
(numlS) DIi] = S[iy/S[1]

910

920 Model the effect of OS
Interference: best case (co-
scheduled) vs. worst case

l

Model the effect of
925 N Network Noise
(interference by other

applications) F l G . 9
930 \

Calculate Standard Deviation
Sli] = f{OS Noise, Network Noise)

U.S. Patent Jun. 23,2015 Sheet 10 of 12 US 9,063,750 B2

Calculate 1000
Normalized
Performance T
(FIG. 7)
1005

Determine number of
available platforms
(numiS)

1010

1045
1015 [Output E }/
—b{ Read 1S[i] y

1020
N

Calculate Energy Consumption using

an Energy Model
Plil = P*T[i}(1S][i].Pidie + 0.8*IS[i].Pc +
IS[i].Pry*(1S[i].PUE) FlG 1 0
Y
1025
Calculate CO, Emission
O[i] = rCO;*P[i]
1030 l

Calculate Normalized
CO» Emission
Eli] = O[iyO[1]

U.S. Patent Jun. 23, 2015

1100 1105
AN AN

Sheet 11 of 12

1110
/

/1115

Calculate

Calculate

. Calculate Calculate Normalized -
Normalized Normalized Cost | | Standard Deviation D Norma!lzgd CO, s
Performance T C (FIG. 8) (FIG. 9) Emission
(FIG.7) ; : (FIG. 10)
1120 Read User Preferences
{e.g., weighis w for
benchmarking metrics) 1145
Y
1125 Read number of
available platforms
(numiS) / 1150
Find s = Min(S[i]), let i
1130 with minimum value for 8
i=1 be Opt
1155
' ' /
1135 Calculate Weighted Overall Output suggested
Suitability platform Opt for
Sli] = (T[I*w1 + CliI*'w2 + application App
Dlil'w3 + E[iPwd + . (Tl +
Cll+ Dl +E[i]+...)
1140
i=i+1 FIG. 11

US 9,063,750 B2

U.S. Patent Jun. 23,2015 Sheet 12 of 12 US 9,063,750 B2

1200\v
1215
AN

Non-Volatile
Memory

1205 1230 1210
AN AN AN

Memory)
Processor Controller Volatile Memory
Network Graphics .
Connection Controller Input Device

1250 1220
AN AN

‘ Non-transitory
Display Computer-Readable

1255 ~ Medium
—~Cri

1260 —
\ HPC Application
Characterization Module

1265 .
\ HPC Application Mapping |
Module

1270 e e
\ HPC Application Monitoring
Module

FIG. 12

US 9,063,750 B2

1
MAPPING HIGH-PERFORMANCE
COMPUTING APPLICATIONS TO
PLATFORMS

BACKGROUND

High-Performance Computing (“HPC”) applications are
increasingly being used in academia and laboratories for sci-
entific research and in industries for business and analytics.
These applications may run on a variety of platforms such as,
for example, supercomputers, clusters, and the cloud, and are
used in fields as diverse as medical imaging, financial ser-
vices, molecular biology, energy, cosmology, geophysics,
manufacturing, and data warechousing, among others. A com-
mon challenge affecting HPC applications is their need to
accelerate the processing of vast amounts of data (e.g., in the
teraflops or petaflops) among multiple processors or proces-
sor cores working in parallel.

HPC users typically have access to platforms of varying
resources, such as servers with different processor types and
speed, different interconnection networks, and with or with-
out virtualization. The platforms may also have different
charging rates and models, with some freely available and
others charging the users for compute capacity per hour. In
addition, as platforms are moving into a world of hybrid
clouds and deployments, a part of the computing resources
may be under user’s control and another part may be in the
cloud. As a result, the number of choices available to HPC
users when selecting a platform or platforms to run their HPC
applications can be daunting. Existing HPC scheduling sys-
tems are not designed to deal with those choices. Hence, HPC
users are faced with the challenge of choosing a platform to
run a given HPC application based upon limited knowledge of
application characteristics, platform capabilities, and users’
preferences (e.g., QoS, cost, sustainability, and so on). Select-
ing a platform to run a given HPC application therefore
remains one of the key challenges faced by HPC users today.

BRIEF DESCRIPTION OF THE DRAWINGS

The present application may be more fully appreciated in
connection with the following detailed description taken in
conjunction with the accompanying drawings, in which like
reference characters refer to like parts throughout, and in
which:

FIG. 1 is a schematic diagram illustrating an example HPC
environment in which the various embodiments may be
implemented;

FIG. 2 is a schematic diagram illustrating an example HPC
Application Management Component of FIG. 1 in more
detail,

FIG. 3 is a schematic diagram illustrating an example HPC
Application Signature data structure as constructed by the
HPC Application Characterization Module of FIG. 2;

FIGS. 4A-B illustrate examples of populated HPC appli-
cation signatures;

FIG. 5 is a schematic diagram illustrating an example HPC
Application Mapping Module of FIG. 2 in more detail;

FIG. 6 is a schematic diagram illustrating the HPC Plat-
form Characterization Module of FIG. 5 in more detail,;

FIG. 7 is a flowchart for a benchmark to estimate the
normalized performance of an HPC application when run-
ning in various platforms;

FIG. 8 is a flowchart for a benchmark to estimate the
normalized cost of running an HPC application in various
platforms;

20

25

35

40

45

50

55

2

FIG. 9 is a flowchart for a benchmark to estimate the
normalized standard deviation on execution time for an HPC
application in various platforms;

FIG. 10 is a flowchart for a benchmark to estimate the
normalized CO, emission when running an HPC application
in various platforms;

FIG. 11 is a flowchart for selecting an optimal platform for
executing an HPC application based on the benchmarking
results from FIGS. 7-10; and

FIG. 12 is a block diagram of an example IT component of
FIG. 1 according to the present disclosure.

DETAILED DESCRIPTION

A method, system, and non-transitory computer readable
medium for mapping HPC applications to platforms are dis-
closed. As generally described herein, an HPC application
refers to a data and compute intensive application (e.g., in the
teraflops range or above) that executes simultaneously in
multiple parallel processors or processor cores of a platform.
A platform refers to an architecture and software framework
that allows HPC and other applications to run. For example, a
platform may include a supercomputer, a computing cluster,
and a cloud computing system, among others.

In various embodiments, an HPC application is mapped to
an optimal platform that is selected among various platforms
available for use. The optimal platform is selected according
to characteristics and benchmarking of the HPC application
in the various platforms, characteristics of the various plat-
forms, user preferences, and live monitoring of the HPC
application. As described in more detail herein below, an HPC
Application Management Component is implemented to
characterize the HPC application and various platforms,
benchmark the HPC application to determine its expected
performance, select an optimal platform among the various
platforms, and monitor the performance of the HPC applica-
tion when executing on the selected optimal platform to deter-
mine whether any adjustments are required to the platform
selection.

It is appreciated that embodiments described herein below
may include various components and features. Some of the
components and features may be removed and/or modified
without departing from a scope of the method, system, and
non-transitory computer readable medium for mapping HPC
applications to platforms. It is also appreciated that, in the
following description, numerous specific details are set forth
to provide a thorough understanding of the embodiments.
However, it is appreciated that the embodiments may be
practiced without limitation to these specific details. In other
instances, well known methods and structures may not be
described in detail to avoid unnecessarily obscuring the
description of the embodiments. Also, the embodiments may
be used in combination with each other.

Reference in the specification to “an embodiment,” “an
example” or similar language means that a particular feature,
structure, or characteristic described in connection with the
embodiment or example is included in at least that one
example, but not necessarily in other examples. The various
instances of the phrase “in one embodiment” or similar
phrases in various places in the specification are not neces-
sarily all referring to the sane embodiment. As used herein, a
component is a combination of hardware and software
executing on that hardware to provide a given functionality.

Referring now to FIG. 1, a schematic diagram illustrating
an example HPC environment in which the various embodi-
ments may be implemented is described. HPC environment
100 generally consists of users 105, HPC Application 110,

US 9,063,750 B2

3

HPC Application Management Component 115, and various
platforms, such as cloud computing system 120, computing
cluster 125 with a gigabit Ethernet interconnect, computing
cluster 130 with an Infiniband interconnect, and supercom-
puter 135. Users 105 have an HPC application 110 that they
desire to run on a given platform. The HPC application 110 is
adata and compute intensive application (e.g., in the teratlops
range or above) that executes simultaneously in multiple par-
allel processors or processor cores of a platform. Examples
include scientific and research applications in diverse fields,
data intensive business applications, manufacturing applica-
tions, and so on. The users 105 may have multiple platforms
available at their disposal to run the HPC application, as
illustrated, for example, with platforms 120-135. Additional
platforms (not shown) may also be available for selection by
the users 105, such as computing clusters with different net-
working interconnects and other capabilities.

The HPC Application Management Component 115, as
described in more detail below, enables the users 105 to select
an optimal platform from all the available platforms to
execute the HPC application 110. As appreciated by one
skilled in the art, an optimal platform refers to a platform that
surpasses all other available platforms in terms of a number of
selected performance and cost criteria. The performance and
cost criteria are determined by benchmarking the HPC appli-
cation, 110 in the various platforms that are available for use
(e.g., platforms 120-135). The performance and cost criteria
may include, for example, the parallel efficiency of the HPC
application 110 based on computation and communication
patterns and platform characteristics (such as sequential and
network performance in terms of interconnect latency and
bandwidth), execution time, CO, emission, and cost calcu-
lated according to application performance and platform
charging rate, among others.

FIG. 2 illustrates an example HPC Application Manage-
ment Component in more detail. HPC Application Manage-
ment Component 200 includes three modules: HPC Applica-
tion Characterization Module 205, HPC Application
Mapping Module 210, and Application Monitoring Module
215. The HPC Application Characterization Module 205
characterizes the HPC application based on problem size,
grain size, communication profile, load balancing require-
ments, and iterative requirements, among others. An applica-
tion signature data structure is constructed to store the appli-
cation characteristics which may be determined through
application profiling by sample execution(s) (e.g., first few
iterations for a long running application) on an actual or
simulated platform. User input may also be acquired to gain
additional detail and understanding of the HPC application
and its implementation.

The HPC Application Mapping Module 210 characterizes
each platform available for running the HPC application with
a platform signature data structure that may be populated by
one-time benchmarking of the platform. Factors that may be
considered in characterizing the platform may include its
CPU core speed and its sustained performance (for example
expressed in floating point operations per second, or FLOPS),
its inter node communication latency and bandwidth, its cost
expressed as charging rate per processor hours, its idle power
dissipation, its network power consumption per processor,
and other factors such as a quantitative assessment of the
operating system (“OS”) noise, the bisection bandwidth of
the interconnect fabric, and so on. Similar to the HPC Appli-
cation Characterization Module 205, the HPC Application
Mapping Module 210 may also consider user input. For

30

35

40

45

4

example, the users may specity a set of weights to assign to
each factor (such as performance, cost) according to its
importance.

The HPC Application Mapping Module 210 is also respon-
sible for running a set of benchmarks to evaluate the expected
performance of the HPC application in each platform. The
benchmarks determine a number of performance and cost
criteria for the HPC application when running at each plat-
form. The HPC Application Mapping Module 210 selects an
optimal platform to execute the HPC application based on the
results of the benchmarks. The optimal platform is the plat-
form that surpasses all other available platforms in terms of
the performance and cost criteria computed for the HPC
application at each platform.

Lastly, the HPC Application Monitoring Module 215
monitors the performance of the HPC application when
executing on the selected optimal platform to determine
whether any adjustments are required to the platform selec-
tion. The monitoring may include, for example, the monitor-
ing of the HPC application execution, such as by performing
online profiling and analysis to determine if a remapping is
required, and instructing the HPC Application Mapping
Module 210 to perform the remapping if required. In various
embodiments, both mapping and monitoring can be accom-
plished by using a runtime agent which is present on each
platform and facilitates both static and dynamic mapping of
applications to platforms as well as profiling. As appreciated
by one skilled in the art, the remapping of an HPC application
to a platform requires application migration to another plat-
form using mechanisms such as checkpoint-restart or lever-
aging the built-in migration provisions of a software or hard-
ware hypervisor, when available.

Attention is now directed to FIG. 3, which illustrates the
HPC Application Signature data structure as constructed by
the HPC Application Characterization Module of FIG. 2.
HPC Application Characterization Module 300 characterizes
an HPC application through Application Profiling 305 and by
getting user input 310. Application Profiling 305 may per-
form a sample execution(s) (e.g., first few iterations for a long
running application) of the HPC application on an actual or
simulated platform. The user input 310 may also be acquired
to gain additional detail and understanding of the HPC appli-
cation and its implementation. The goal is to collect as much
information about the HPC application as possible in order to
populate an HPC Application Signature data structure such
as, for example, the HPC Application Signature data structure
320.

The HPC Application Signature data structure 320 is a
representation of HPC application characteristics which may
include, for example, the computation time (e.g., grain size)
to execute the HPC application, the number of communica-
tion messages required during the HPC application’s execu-
tion, the size of each message, the computation time per
Barrier for Barrier-based applications, and whether the appli-
cation is iterative or load balancing is required. The charac-
teristics may be given as a function of the problem size N and
the number of processors P. An HPC application instance may
therefore be defined as a tuple (N, P, SIGN), where SIGN is
the HPC Application Signature data structure 320 (populated
based on the values of N and P).

It is appreciated that additional parameters and character-
istics may be included in the HPC Application Signature data
structure 320. It is also appreciated that a populated HPC
Application Signature data structure 320 may be simply
referred to as an HPC application signature.

FIGS. 4A-B illustrate examples of populated HPC appli-
cation signatures. FIG. 4A shows the HPC application signa-

US 9,063,750 B2

5

ture 400 for a simple Jacobi 5-point stencil algorithm (e.g.,
using 2-D parallel decomposition) which does iterative com-
putation on elements of a matrix of dimension NxN. FIG. 4B
shows the HPC application signature 405 for a one-dimen-
sional FFT computation of N points.

Referring now to FIG. 5, an example HPC Application
Mapping Module of FIG. 2 is illustrated in more detail. HPC
Application Mapping Module 500 includes an HPC Platform
Characterization Module 505, an HPC Application Bench-
marking Module 510, and an HPC Platform Selection Mod-
ule 515. The HPC Platform Characterization Module 505
characterizes each platform available for running the HPC
application with a platform signature data structure that may
be populated by one-time benchmarking ofthe platform. The
HPC Application Benchmarking Module 510 runs a set of
benchmarks to evaluate the performance of the HPC applica-
tionin each platform. The benchmarks determine a number of
performance and cost criteria for the HPC application when
running at each platform. Examples of benchmarks may
include a benchmark to estimate the normalized performance
of the HPC application when running in various platforms
(FIG. 7), a benchmark to estimate the normalized cost of
running the HPC application in various platforms (FIG. 8), a
benchmark to estimate the normalized standard deviation on
execution time for the HPC application in various platforms
(FIG. 9), and a benchmark to estimate normalized CO, emis-
sion when running the HPC application in various platforms
(FIG. 10), among others. The HPC Platform Selection Mod-
ule 515 selects an optimal platform to execute the HPC appli-
cation based on the results of the benchmarks.

FIG. 6 illustrates the HPC Platform Characterization Mod-
ule 505 in more detail. The HPC Platform Characterization
Module characterizes each platform (600) with an HPC Plat-
form Signature data structure 605 that may be populated by
one-time benchmarking of the platform. The HPC Platform
Signature data structure 605 is a representation of character-
istics of a platform which may include, for example, its CPU
core speed, its inter node latency and bandwidth, its charging
rate per processor hours, its idle power, its network power
consumption per processor, and others such as OS noise,
bisection bandwidth, and so on.

It is appreciated that additional parameters and character-
istics may be included in the HPC Platform Signature data
structure 605. It is also appreciated that a populated HPC
Platform Signature data structure 605 may be simply referred
to as an HPC platform signature.

The benchmarks implemented in HPC Application Bench-
marking Module 510 are now described in more detail. Refer-
ring to FIG. 7, a flowchart for a benchmark to estimate the
normalized performance of the HPC application when run-
ning in various platforms is described. First, an application
instance (N, P, SIGN) is determined for the HPC application
(700). Next, the number of available platforms is determined
and referred to as numlIS (705). An index i to represent a
running count of the available platforms is set and an execu-
tion loop is started (710) by first obtaining the HPC platform
signature IS for the index i, i.e., IS[i] (715). The application
instance (N, P, SIGN) and HPC platform signature IS[i] for
the given platform (indexed by i) are then used to estimate a
communication to computation time ratio R[i] as follows
(720), where the “.” operator in “S.f” indicates selecting field
“f” in structure “S”:

RAI=[SIGN-F2(N,P)(ISfi]-a+SIGN-f3(N, PYISi]-B))/

[SIGN-f1(N,PYISfi]-C] (Eq. 1)

Next, a parallel efficiency measure E[i] is calculated as
(725):

Efi]=1/(1+R[i)) (Eq. 2)

35

40

45

65

6

The parallel efficiency measure is scaled by the CPU core
speed to determine the sequential performance P[i] of the
HPC application in the platform indexed by i (730):

P[iJ=E[i]*IS[i]-C (Eq. 3)

The sequential performance is then scaled to obtain the nor-
malized performance T[i] of the HPC application in the plat-
form indexed by i (735):

Tfij=P[\)/P[i] (Eaq. 4)

Note that the normalized performance is computed to be
inversely proportional to the sequential performance. This is
done as a way to compare the normalized performance with
the normalized cost and other benchmarking results when
selecting the optimal platform for running the HPC applica-
tion, as described in more detail below.

The loop continues by incrementing the index i (740) and
repeating the steps 715-735 for each ISM until the index i
reaches the number of available platforms, numIS (745). The
result is output as a vector T to represent the normalized
performance of the HPC application for the available plat-
forms (750).

Referring to FIG. 8, a flowchart for a benchmark to esti-
mate the normalized cost of running the HPC application in
various platforms is now described. First, the normalized
performance of the HPC application is calculated as
described above with reference to FIG. 7 (800). Next, the
number of available platforms is determined and referred to
as numlS (805). An index i to represent a running count of the
available platforms is set and an execution loop is started
(810) by first obtaining the HPC platform signature IS for the
index i, i.e., IS[i] (815). The cost of running the HPC appli-
cation in the platform indexed by i is calculated as follows
(820):

Dfi]=Tfi]*IS[i]-¥*P (Eq. 5)

where P again represents the number of processors available
for the platform indexed by i. The normalized cost is calcu-
lated as (825):

C[i]=Dfi]/D[1] (Eq. 6)

The loop continues by incrementing the index i (830) and
repeating the steps 815-830 for each ISM until the index i
reaches the number of available platforms, numIS (835). The
result is output as a vector C to represent the normalized cost
of'the HPC application for the available platforms (840).

Referring now to FIG. 9, a flowchart for a benchmark to
estimate the normalized standard deviation on execution time
for the HPC application in various platforms is described.
First, an application instance (N, P, SIGN) is determined for
the HPC application (900). Next, the number of available
platforms is determined and referred to as numlIS (905). An
index i to represent a running count of the available platforms
is set and an execution loop is started (910) by first obtaining
the HPC platform signature IS for the index i, i.e., IS[i] (915).
The application instance (N, P, SIGN) and HPC platform
signature IS[i] for the given platform (indexed by 1) are then
used to model the effects of OS interference (920) and the
effects of network noise (925).

The standard deviation is then calculated as (930):

S/i1=f(OS Noise,Network Noise) (Eq. 7)

where f denotes a function, such as, for example, a function
statistically derived from measured data using various tools,
e.g., excel, or approaches, e.g., curve Fitting. The normalized
standard deviation is therefore given by (935):

Dfij=S[i}/S[1] (Eq. 8)

US 9,063,750 B2

7

The loop continues by incrementing the index 1 (940) and
repeating the steps 915-940 for each IS[i] until the index i
reaches the number of available platforms, numIS (945). The
result is output as a vector D to represent the normalized
standard deviation on execution time for the HPC application
when executed on the available platforms (950).

Referring now to FIG. 10, a flowchart for a benchmark to
estimate normalized CO, emission when running the HPC
application in various platforms is described. First, the nor-
malized performance of the HPC application is estimated as
described above with reference to FIG. 7 (1000). Next, the
number of available platforms is determined and referred to
as numIS (1005). An index i to represent a running count of
the available platforms is set and an execution loop is started
(1010) by first obtaining the HPC platform signature IS for
the index i, i.e., IS[i] (1015). The energy consumption as a
result of executing the HPC application in the platform
indexed by i is calculated as follows (1020):

N[i]=P*T[i\IS{i]-Pidle+0.8*ISfi]-Pc+ISfi]-

Pr)*(ISfi]-PUE) (Eq. 9)
The CO, emission is then given by (1025):
Ofi]=rCO,*N[i] (Eq. 10)

where rCO, is the rate of emission, that is kg per- Kwh. The
normalized CO, emission is therefore (1030):

Efi]=0/ij/0() (Eq. 11)

The loop continues by incrementing the index 1 (1035) and
repeating the steps 1015-1035 for each IS[1] until the index i
reaches the number of available platforms, numIS (1040).
The result is output as a vector E to represent the normalized
CO, emission when running the HPC application in the avail-
able platforms (1045).

It is appreciated that the benchmarks described with refer-
enceto FIGS. 7-10 are example benchmarks that may be used
to characterize the performance ofthe HPC application when
executed on the available platforms. Other benchmarks may
also be employed to characterize the HPC application perfor-
mance.

Attention is now directed to FIG. 11, which shows a flow-
chart for selecting an optimal platform for executing the HPC
application based on the benchmarking results from FIGS.
7-10. The benchmarks for the HPC application are run for all
available platforms, as described above with reference to
FIGS.7-10 (1100-1115). As many benchmarks as desired can
be implemented to characterize the execution of the HPC
application in the available platforms. In selecting the optimal
platform, the HPC Platform Selection Module 515 in the HPC
Application Mapping Module 210 considers preferences
specified by the user(s). The user preferences may be speci-
fied in the form of weights that can be assigned to the bench-
marking results (1120). The weights indicate a priority rank-
ing of the benchmarking results according to the user(s)
requirements. For example, one user may assign a higher
weight to the normalized performance (FIG. 7) than the nor-
malized CO, emission, another user may care more about the
normalized cost than any other benchmarking metric, and so
on.

Next, the number of available platforms is determined and
referred to as numlS (1125). An index i to represent a running
count of the available platforms is set and an execution loop is
started (1130). A weighted overall suitability metric for
executing the HPC application in the available platform
indexed by i is computed as:

SH]=(TAT*wl+Cfi]*w2+Dfi] *w3+Efi] *wa+ . .)/

(TfiJ+CfiJ+Dfi]+Efi]+ .. .) (Eq. 12)

20

25

40

45

60

65

8

The loop continues by incrementing the index 1 (1140) and
repeating the steps 1130-1135 for each available platform
until the index 1 reaches the total number of available plat-
forms, numlIS (1145). The minimum weighted overall suit-
ability is computed (1150) to determine the optimal platform
(1155). The optimal platform is the one that surpasses all
other available platforms in terms of the benchmarking
results.

It is appreciated that other considerations may be used to
determine the optimal platform. For example, the algorithm
illustrated in FIG. 11 above may be modified to determine a
recommended processor count for the optimal platform, a
recommended single or multiple HPC application instance
(e.g., increasing problem sizes with increasing processor
counts), or to perform a dynamic remapping of the HPC
application to another platform if it is probable that the user
preferences and expectations may not be met on the selected
optimal platform. It is also appreciated that more than one
platform may be selected for execution of the HPC applica-
tion. For example, the execution of the HPC application may
be distributed across multiple platforms, e.g., a cloud com-
puting system and a supercomputer.

As described above, the HPC Application Monitoring
Module 215 monitors the performance of the HPC applica-
tion when executing on the selected optimal platform to deter-
mine whether any adjustments are required to the platform
selection. The monitoring may include, for example, manag-
ing the HPC application mapping to the platform, monitoring
of the HPC application execution, such as by performing
online profiling and analysis to determine if a remapping is
required, and performing the remapping if required.

As described above with reference to FIG. 2, the HPC
Application Characterization Module 205, the HPC Applica-
tion Mapping Module 210, and the HPC Application Moni-
toring Module 215 in the HPC Application Management
Component 115 for performing the steps of FIG. 3 and FIGS.
6-11 can be implemented in hardware, software, or a combi-
nation of both. Referring now to FIG. 12, an IT component for
implementing the HPC Application Management Compo-
nent 115 of FIG. 1 according to the present disclosure is
described. The IT component 1200 (e.g., a front-end compo-
nent or a back-end component) can include a processor 1205
and memory resources, such as, for example, the volatile
memory 1210 and/or the non-volatile memory 1215, for
executing instructions stored in a tangible non transitory
medium (e.g., volatile memory 1210, non-volatile memory
1215, and/or computer readable medium 1220) including
logic configured to perform various examples of the present
disclosure.

A machine (e.g., a computing device) can include and/or
receive a tangible non-transitory computer-readable medium
1220 storing a set of computer-readable instructions (e.g.,
software) via an input device 1225. As used herein, the pro-
cessor 1205 can include one or a plurality of processors such
as in a parallel processing system. The memory can include
memory addressable by the processor 1205 for execution of
computer readable instructions. The computer readable
medium 1220 can include volatile and/or non-volatile
memory such as a random access memory (“RAM”), mag-
netic memory such as a hard disk, floppy disk, and/or tape
memory, a solid state drive (“SSD”), flash memory, phase
change memory, and so on. In some embodiments, the non-
volatile memory 1215 can be a local or remote database
including a plurality of physical non-volatile memory
devices.

The processor 1205 can control the overall operation of the
IT component 1200. The processor 1205 can be connected to

US 9,063,750 B2

9

a memory controller 1230, which can read and/or write data
from and/or to volatile memory 1210 (e.g., RAM). The
memory controller 1230 can include a processor with its own
memory resources (e.g., volatile and/or non-volatile
memory). The volatile memory 1210 can include one or a
plurality of memory modules (e.g., chips). The processor
1205 can be connected to a bus 1235 to provide communica-
tion between the processor 1205, the network connection
1240, and other portions of the IT component 1200. The
non-volatile memory 1215 can provide persistent data stor-
age for the I'T component 1200. Further, the graphics control-
ler 1245 can connect to an optional display 1250.

Each IT component 1200 can include a computing device
including control circuitry such as a processor, a state
machine, controller, and/or similar machine. As used herein,
the indefinite articles “a” and/or “an” can indicate one or more
than one of the named object. Thus, for example, “a proces-
sor” can include one or more than one processor, such as in a
multi-core processor, cluster, or parallel processing arrange-
ment.

The control circuitry can have a structure that provides a
given functionality, and/or execute computer-readable
instructions that are stored on a non-transitory computer-
readable medium (e.g., the non-transitory computer-readable
medium 1220). The non-transitory computer-readable
medium 1220 can be integral, or communicatively coupled,
to a computing device, in either a wired or wireless manner.
For example, the non-transitory computer-readable medium
1220 can be an internal memory, a portable memory, a por-
table disk, or a memory located internal to another computing
resource (e.g., enabling the computer-readable instructions to
be downloaded over the Internet).

The non-transitory computer-readable medium 1220 can
have computer-readable instructions 1255 stored thereon that
are executed by the processor 1205 to implement an HPC
Application Characterization Module 1260, an HPC Appli-
cation Mapping Module 1265, and an HPC Application
Monitoring Module 1270 according to the present disclosure.
The non-transitory computer-readable medium 1220, as used
herein, can include volatile and/or non-volatile memory.
Volatile memory can include memory that depends upon
power to store information, such as various types of dynamic
random access memory (“DRAM”), among others. Non-
volatile memory can include memory that does not depend
upon power to store information. Examples of non-volatile
memory can include solid state media such as flash memory,
EEPROM, and phase change random access memory
(“PCRAM”), among others. The non-transitory computer-
readable medium 1220 can include optical discs, digital video
discs (“DVD”), Blu-Ray Discs, compact discs (“CD”), laser
discs, and magnetic media such as tape drives, floppy discs,
and hard drives, solid state media such as flash memory,
EEPROM, PCRAM, as well as any other type of computer-
readable media.

Advantageously, the HPC Application Management Com-
ponent 115 described above applies novel techniques for
mapping HPC applications to platforms. The techniques pre-
vent overloading of a platform while others may be less
loaded and more suitable to be selected for execution of the
HPC application. This results in better utilization and match
between platform demand and supply, hence enabling users
to have an intelligent resource management tool at their dis-
posal (i.e., the HPC Application Management Component
115). Additionally, by taking into account the users’ prefer-
ences at each step of the platform selection, a better match
between the users’ expectation and the HPC application
execution is provided. The runtime monitoring of an HPC

10

15

20

25

30

35

40

45

55

60

10

application execution on a selected optimal platform further
ensures that user expectations are met.

In addition, the selection of the optimal platform for
executing the HPC application provides cost savings and
reduced wait times for application execution since the incom-
ing mix of HPC applications are distributed across the avail-
able platforms (rather than being concentrated into one plat-
form) based on the benchmarking results. Users, application
developers, and system owners can all benefit with the imple-
mentation of the HPC Application Management Component
115. Users can focus on application development and leave
the onus of determining the optimal platform to the compo-
nent 115. Application developers can benefit from application
characterization by making implementation and design
choices based on the available platforms. System owners can
use the HPC Application Characterization Module 205 to
target system design and features to specific classes of HPC
applications.

It is appreciated that the previous description of the dis-
closed embodiments is provided to enable any person skilled
in the art to make or use the present disclosure. Various
modifications to these embodiments will be readily apparent
to those skilled in the art, and the generic principles defined
herein may be applied to other embodiments without depart-
ing from the spirit or scope of the disclosure. Thus, the present
disclosure is not intended to be limited to the embodiments
shown herein but is to be accorded the widest scope consistent
with the principles and novel features disclosed herein. For
example, it is appreciated that the present disclosure is not
limited to a particular configuration, such as IT component
1200.

Those of skill in the art would further appreciate that the
various illustrative modules and steps described in connec-
tion with the embodiments disclosed herein may be imple-
mented as electronic hardware, computer software, or com-
binations of both. For example, the example steps of FIG. 3
and FIGS. 6-11 may be implemented using software mod-
ules, hardware modules or components, or a combination of
software and hardware modules or components. Thus, in one
embodiment, one or more of the example steps of FIG. 3 and
FIGS. 6-11 may comprise hardware modules or components.
In another embodiment, one or more of the steps of FIG. 3 and
FIGS. 6-11 may comprise software code stored on a computer
readable storage medium, which is executable by a processor.

To clearly illustrate this interchangeability of hardware and
software, various illustrative components, blocks, modules,
and steps have been described above generally in terms of
their functionality (e.g., the HPC Application Characteriza-
tion Module 1260, the HPC Application Mapping Module
1265, and the HPC Application Monitoring Module 1270).
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Those skilled in
the art may implement the described functionality in varying
ways for each particular application, but such implementation
decisions should not be interpreted as causing a departure
from the scope of the present disclosure.

What is claimed is:
1. A system for mapping a High Performance Computing
(“HPC”) application to a platform, comprising:

an HPC application characterization module to determine
an HPC application signature representative of charac-
teristics of the HPC application, the HPC application
signature based on a problem size and a number of
processors of the system;

US 9,063,750 B2

11

determining a plurality of HPC platform signatures repre-
sentative of platform characteristics corresponding to a
plurality of platforms;

an HPC application mapping module to select a platform

from a plurality of platforms to execute the HPC appli-
cation based on the HPC application signature and a
CO, emission-benchmark, the CO, emission bench-
mark determined by estimating energy consumptions
corresponding to executing the HPC application on each
of the plurality of platforms; and

an HPC application monitoring module to monitor the

execution of the HPC application on the selected plat-
form,

wherein the CO, emission benchmark computes a bench-

marking result using a mathematical formula based on
the HPC application signature and the HPC platform
signature for each platform in the plurality of platforms
and at least one of the HPC application characterization
module, the HPC application mapping module, or the
HPC application monitoring module is implemented via
a processor.

2. The system of claim 1, wherein the HPC application
signature comprises a data structure with a plurality of fields
identifying the characteristics, the fields selected from a
group consisting of computation time, number of messages,
size of messages, FLLOPS per Barrier, whether the HPC appli-
cation is iterative, and whether load balancing is required.

3. The system of claim 1, wherein the HPC application
characterization module determines the HPC application sig-
nature based on sample profiling of the HPC application and
on input from users of the HPC application.

4. The system of claim 1, wherein the HPC application
mapping module determines an HPC platform signature for
each platform in the plurality of platforms.

5. The system of claim 4, wherein each HPC platform
signature comprises a data structure with a plurality of fields
selected from a group consisting of CPU core speed, inter
node latency, inter node bandwidth, charging rate per proces-
sor hours, idle power, network power consumption per pro-
cessor, OS noise and bisection bandwidth.

6. The system of claim 4, wherein the HPC application
mapping module determines the HPC platform signature for
each platform based on sample profiling of each platform.

7. The system of claim 4, wherein the HPC application
mapping module selects the platform from the plurality of
platforms to execute the HPC application based on the HPC
platform signature of each platform in the plurality of plat-
forms.

8. The system of claim 1, wherein the HPC application
mapping module calculates a weighted overall suitability
metric to select the platform from the plurality of platforms to
execute the HPC application.

9. The system of claim 8, wherein the weighted overall
suitability metric is a weighted metric of user specified
weights multiplied by the benchmarking result and at least
one other benchmark.

10. The system of claim 8, wherein the platform selected
from the plurality of platforms to execute the HPC application
has alower weighted overall suitability metric than each other
platform in the plurality of platforms.

11. A method for mapping a High Performance Computing
(“HPC”) application to a platform, comprising:

determining an HPC application signature representative

ofapplication characteristics of the HPC application, the
HPC application signature based on a problem size and
a number of processors of the system;

10

15

20

25

30

35

40

45

50

55

60

65

12

determining a plurality of HPC platform signatures repre-
sentative of platform characteristics corresponding to a
plurality of platforms;

running a CO, emission benchmark by estimating energy

consumptions corresponding to executing the HPC
application on the plurality of platforms based on the
HPC application signature and the plurality of HPC
platform signatures to determine CO, emissions from
executing the HPC application on each of the plurality of
platforms, the CO, emission benchmark to compute a
benchmarking result using a mathematical formula
based on the HPC application signature and the HPC
platform signature for each platform in the plurality of
platforms; and

selecting a platform from the plurality of platforms to

execute the HPC application based on the benchmarking
result.
12. The method of claim 11, wherein the HPC application
signature comprises a data structure with a plurality of fields
identifying the application characteristics, the fields popu-
lated by sample profiling of the HPC application and based on
input from users of the HPC application.
13. The method of claim 11, wherein each HPC platform
signature comprises a data structure with a plurality of fields
identifying the platform characteristics, the fields populated
by sample profiling of each corresponding platform.
14. The method of claim 11, wherein selecting a platform
from the plurality of platforms comprises calculating a
weighted overall suitability metric by multiplying the bench-
marking result by user specified weights, the user specified
weights identifying a weights corresponding to the CO, emis-
sion benchmark and at least one other benchmark.
15. The method of claim 11, wherein the platform selected
from the plurality of platforms to execute the HPC application
has a lower weighted overall suitability metric than each of
the other platforms in the plurality of platforms.
16. A non-transitory computer readable medium having
instructions stored thereon executable by a processor to:
determine a High Performance Computing (“HPC”) appli-
cation signature representative of characteristics of the
HPC application, using a function based on a problem
size and a number of processors of the system;

determining a plurality of HPC platform signatures repre-
sentative of platform characteristics corresponding to a
plurality of platforms;

run a CO, emission benchmark of the HPC application on

a plurality of platforms based on the signature of the
HPC application, the CO, emission benchmark deter-
mined by estimating energy consumptions correspond-
ing to executing the HPC application on the plurality of
platforms, the CO, emission benchmark to compute a
benchmarking result using a mathematical formula
based on the HPC application signature and the HPC
platform signature for each platform in the plurality of
platforms;

select a platform from the plurality of platforms to execute

the HPC application based on the benchmarking result;
and

monitor execution of the HPC application on the platform

to adjust the selection of the platform based on CO,
emissions from executing the HPC application on the
selected platform.

17. The non-transitory computer readable medium of claim
16, wherein the instructions to select the platform from the
plurality of platforms comprise instructions to compute a
weighted overall suitability metric by multiplying the results

US 9,063,750 B2

13

from the CO, emission benchmark and at least one other
benchmark by user specified weights.

18. The non-transitory computer readable medium of claim
16, wherein the platform selected from the plurality of plat-
forms to execute the HPC application has a lower weighted
overall suitability metric than each other platform in the plu-
rality of platforms.

19. The system of claim 1, wherein the CO, emission
benchmark estimates normalized CO, emission to execute
the HPC application on each of the plurality of platforms.

#* #* #* #* #*

5

10

14

